1、一次性代码
直接编写出各种鸭子的类:MallardDuck//野鸭,RedheadDuck//红头鸭,各类有三个方法:quack():叫的方法swim():游水的方法display():外形的方法
2、运用继承的特性,将其中共同的部分提升出来,避免重复编程。
即:设计一个鸭子的超类(Superclass),并让各种鸭子继承这个超类。public class Duck{ public void quack(){ //呱呱叫 System.out.println("呱呱叫"); } public void swim(){ //游泳 System.out.println(" 游泳"); } public abstratact void display(); /*因为外观不一样,让子类自己去决定了。*/}对于它的子类只需简单的继承就可以了,并实现自己的display()方法。//野鸭 public class MallardDuck extends Duck{ public void display(){ System.out.println("野鸭的颜色..."); } }//红头鸭 public class RedheadDuck extends Duck{ public void display(){ System.out.println("红头鸭的颜色..."); }}//不幸的是,现在客户又提出了新的需求,想让鸭子飞起来。这个对于我们OO程序员,在简单不过了,在超类中在加一//个方法就可以了。public class Duck{ public void quack(){ //呱呱叫 System.out.println("呱呱叫"); } public void swim(){ //游泳 System.out.println(" 游泳"); } public abstract void display(); /*因为外观不一样,让子类自己去决定了。*/ public void fly(){ System.out.println("飞吧!鸭子"); }}对于不能飞的鸭子,在子类中只需简单的覆盖。//残废鸭 public class DisabledDuck extends Duck{ public void display(){ System.out.println("残废鸭的颜色..."); } public void fly(){ //覆盖,变成什么事都不做。 }} 其它会飞的鸭子不用覆盖。这样所有的继承这个超类的鸭子都会fly了。但是问题又出来了,客户又提出有的鸭子会飞,有的不能飞。
总结:如果超类有新的特性,子类都必须变动,一个类变让另一个类也跟着变。这样很显然的耦合了一起。利用继承-->耦合度太高了.
3、运用接口
我们把容易引起变化的部分提取出来并封装之,来应付以后的变法。虽然代码量加大了,但可用性提高了,耦合度也降低了。我们把Duck中的fly方法和quack提取出来。 public interface Flyable{ public void fly(); } public interface Quackable{ public void quack(); } 最后Duck的设计成为:public class Duck{ public void swim(){ //游泳 System.out.println(" 游泳"); } public abstract void display(); /*因为外观不一样,让子类自 己去决定了。*/} 而MallardDuck,RedheadDuck,DisabledDuck 就可以写成为://野鸭 public class MallardDuck extends Duck implements Flyable,Quackable{ public void display(){ System.out.println("野鸭的颜色..."); } public void fly(){ //实现该方法 } public void quack(){ //实现该方法 } }//红头鸭 public class RedheadDuck extends Duck implements Flyable,Quackable{ public void display(){ System.out.println("红头鸭的颜色..."); } public void fly(){ //实现该方法 } public void quack(){ //实现该方法 }} //残废鸭 只实现Quackable(能叫不能飞) public class DisabledDuck extends Duck implements Quackable{ public void display(){ System.out.println("残废鸭的颜色..."); } public void quack(){ //实现该方法 }}总结:Flyable和 Quackable接口一开始似乎还挺不错的,解决了问题(只有会飞到鸭子才实现 Flyable),但是Java接口不具有实现代码,所以实现接口无法达到代码的复用。
4、策略模式
对上面各方式的总结:
继承的好处: 让共同部分,可以复用.避免重复编程.
继承的不好: 耦合性高.一旦超类添加一个新方法,子类都继承,拥有此方法,
若子类相当部分不实现此方法,则要进行大批量修改.
继承时,子类就不可继承其它类了.
接口的好处: 解决了继承耦合性高的问题.
且可让实现类,继承或实现其它类或接口.
接口的不好: 不能真正实现代码的复用.可用以下的策略模式来解决.
我们有一个设计原则:找出应用中相同之处,且不容易发生变化的东西,把它们抽取到抽象类中,让子类去继承它们;找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。 -->important.现在,为了要分开“变化和不变化的部分”,我们准备建立两组类(完全远离Duck类),一个是"fly"相关的,另一个是“quack”相关的,每一组类将实现各自的动作。比方说,我们可能有一个类实现“呱呱叫”,另一个类实现“吱吱叫”,还有一个类实现“安静”。首先写两个接口。FlyBehavior(飞行行为)和QuackBehavior(叫的行为). public interface FlyBehavior{ public void fly(); } public interface QuackBehavior{ public void quack(); } 我们在定义一些针对FlyBehavior的具体实现。 public class FlyWithWings implements FlyBehavior{ public void fly(){ //实现了所有有翅膀的鸭子飞行行为。 } }public class FlyNoWay implements FlyBehavior{ public void fly(){ //什么都不做,不会飞 } } 针对QuackBehavior的几种具体实现。public class Quack implements QuackBehavior{ public void quack(){ //实现呱呱叫的鸭子 }} public class Squeak implements QuackBehavior{ public void quack(){ //实现吱吱叫的鸭子 }} public class MuteQuack implements QuackBehavior{ public void quack(){ //什么都不做,不会叫 }}点评一:这样的设计,可以让飞行和呱呱叫的动作被其他的对象复用,因为这些行为已经与鸭子类无关了。而我们增加一些新的行为,不会影响到既有的行为类,也不会影响“使用”到飞行行为的鸭子类。最后我们看看Duck 如何设计。 public class Duck{ --------->在抽象类中,声明各接口,定义各接口对应的方法. FlyBehavior flyBehavior;//接口 QuackBehavior quackBehavior;//接口 public Duck(){} public abstract void display(); public void swim(){ //实现游泳的行为 } public void performFly(){ flyBehavior.fly(); -->由于是接口,会根据继承类实现的方式,而调用相应的方法. } public void performQuack(){ quackBehavior.quack();(); } }看看MallardDuck如何实现。----->通过构造方法,生成'飞','叫'具体实现类的实例,从而指定'飞','叫'的具体属性 public class MallardDuck extends Duck{ public MallardDuck { flyBehavior = new FlyWithWings (); quackBehavior = new Quack(); //因为MallardDuck 继承了Duck,所有具有flyBehavior 与quackBehavior 实例变量} public void display(){ //实现 } } 这样就满足了即可以飞,又可以叫,同时展现自己的颜色了。这样的设计我们可以看到是把flyBehavior ,quackBehavior 的实例化写在子类了。我们还可以动态的来决定。 我们只需在Duck中加上两个方法。 在构造方法中对属性进行赋值与用属性的setter的区别:构造方法中对属性进行赋值:固定,不可变;用属性的setter,可以在实例化对象后,动态的变化,比较灵活。 public class Duck{ FlyBehavior flyBehavior;//接口 QuackBehavior quackBehavior;//接口 public void setFlyBehavior(FlyBehavior flyBehavior){ this.flyBehavior = flyBehavior; } public void setQuackBehavior(QuackBehavior quackBehavior { this.quackBehavior= quackBehavior; } }